Yosupo Judge : Exp of Formal Power Series

https://judge.yosupo.jp/problem/exp_of_formal_power_series

I implemented the algorithm to compute exp(f(x)) by divide and conquer described in https://arxiv.org/abs/1807.11597. To improve performance, I did the following.

  • Precalculate the FFT results for sequences repeatedly used.
  • Normally, 2n terms are required to compute n terms times n terms. However, in this case n terms are also fine because we only need the last n/2 terms, so we don't care that the first n/2 terms are broken.

The following figure depicts the idea of this algorithm.

f:id:pekempey:20191004041227p:plain

f:id:pekempey:20191004041240p:plain


Source Code

#include <bits/stdc++.h>

#define rep(i, n) for (int i = 0; i < (n); i++)
#define repr(i, n) for (int i = (n) - 1; i >= 0; i--)
#define rep2(i, l, r) for (int i = (l); i < (r); i++)
#define rep2r(i, l, r) for (int i = (r) - 1; i >= (l); i--)
#define range(a) a.begin(), a.end()

using namespace std;
using ll = long long;
using i128 = __int128_t;

constexpr int MOD = 998244353;
constexpr int ROOT = 3;


class mint {
  int n;
public:
  mint(int n_ = 0) : n(n_) {}
  explicit operator int() { return n; }
  friend mint operator-(mint a) { return -a.n + MOD * (a.n != 0); }
  friend mint operator+(mint a, mint b) { int x = a.n + b.n; return x - (x >= MOD) * MOD; }
  friend mint operator-(mint a, mint b) { int x = a.n - b.n; return x + (x < 0) * MOD; }
  friend mint operator*(mint a, mint b) { return (long long)a.n * b.n % MOD; }
  friend mint &operator+=(mint &a, mint b) { return a = a + b; }
  friend mint &operator-=(mint &a, mint b) { return a = a - b; }
  friend mint &operator*=(mint &a, mint b) { return a = a * b; }
  friend bool operator==(mint a, mint b) { return a.n == b.n; }
  friend bool operator!=(mint a, mint b) { return a.n != b.n; }
  friend istream &operator>>(istream &i, mint &a) { return i >> a.n; }
  friend ostream &operator<<(ostream &o, mint a) { return o << a.n; }
};
mint operator "" _m(unsigned long long n) { return n; }


mint modpow(mint a, long long b) {
  mint res = 1;
  while (b > 0) {
    if (b & 1) res *= a;
    a *= a;
    b >>= 1;
  }
  return res;
}

mint modinv(mint n) {
  int a = (int)n, b = MOD;
  int s = 1, t = 0;
  while (b != 0) {
    int q = a / b;
    a -= q * b;
    s -= q * t;
    swap(a, b);
    swap(s, t);
  }
  return s >= 0 ? s : s + MOD;
}


template<int N>
struct NTT {
  mint rots[N];

  NTT() {
    mint w = modpow(ROOT, (MOD - 1) / N);
    mint ws = 1;
    for (int i = 0; i < N / 2; i++) {
      rots[i + N / 2] = ws;
      ws *= w;
    }
    for (int i = N / 2 - 1; i >= 1; i--) {
      rots[i] = rots[i * 2];
    }
  }

  void ntt(vector<mint> &a) {
    const int n = a.size();
    int i = 0;
    for (int j = 1; j < n - 1; j++) {
      for (int k = n >> 1; k > (i ^= k); k >>= 1);
      if (j < i) swap(a[i], a[j]);
    }
    for (int i = 1; i < n; i *= 2) {
      for (int j = 0; j < n; j += i * 2) {
        for (int k = 0; k < i; k++) {
          mint s = a[j + k];
          mint t = a[j + k + i] * rots[i + k];
          a[j + k    ] = s + t;
          a[j + k + i] = s - t;
        }
      }
    }
  }

  void invntt(vector<mint> &a) {
    const int n = a.size();
    ntt(a);
    reverse(a.begin() + 1, a.end());
    mint inv_n = modinv(n);
    for (int i = 0; i < n; i++) {
      a[i] *= inv_n;
    }
  }

  vector<mint> convolution(vector<mint> a, vector<mint> b) {
    const int n = a.size() + b.size() - 1;
    int t = 1;
    while (t < n) t *= 2;
    a.resize(t);
    b.resize(t);
    ntt(a);
    ntt(b);
    for (int i = 0; i < t; i++) {
      a[i] *= b[i];
    }
    invntt(a);
    a.resize(n);
    return a;
  }
};
NTT<1 << 21> fft;

typedef vector<mint> poly; 

poly operator-(poly a) {
  for (int i = 0; i < a.size(); i++) {
    a[i] = -a[i];
  }
  return a;
}

poly operator+(poly a, mint b) {
  a[0] += b;
  return a;
}

poly operator+(poly a, poly b) {
  assert(a.size() == b.size());
  for (int i = 0; i < a.size(); i++) {
    a[i] += b[i];
  }
  return a;
}

poly operator*(poly a, poly b) {
  assert(a.size() == b.size());
  const int n = a.size();
  a = fft.convolution(a, b);
  a.resize(n);
  return a;
}

poly operator*(poly a, mint b) {
  for (int i = 0; i < a.size(); i++) {
    a[i] *= b;
  }
  return a;
}

poly operator-(poly a, poly b) {
  assert(a.size() == b.size());
  for (int i = 0; i < a.size(); i++) {
    a[i] -= b[i];
  }
  return a;
}

poly &operator+=(poly &a, poly b) { return a = a + b; }
poly &operator-=(poly &a, poly b) { return a = a - b; }

poly cut(poly &a, int n) {
  assert(n <= a.size());
  vector<mint> b(n);
  for (int i = 0; i < n; i++) {
    b[i] = a[i];
  }
  return b;
}

// g = 1 / f
// 1 / g - f = 0
// g <- g - (1 / g - f) / (- 1 / g^2)
// g <- g * (2 - fg)
poly pinv(poly a) {
  const int n = a.size();
  poly x = {modinv(a[0])};
  for (int i = 1; i < n; i *= 2) {
    const int m = min(i * 2, n);
    x.resize(m);
    x = (-cut(a, m) * x + 2) * x;
  }
  return x;
}

poly pdiff(poly a) {
  const int n = a.size();
  poly b(n);
  for (int i = 1; i < n; i++) {
    b[i - 1] = i * a[i];
  }
  return b;
}

poly pint(poly a) {
  const int n = a.size();
  poly b(n);
  for (int i = 0; i + 1 < n; i++) {
    b[i + 1] = a[i] * modinv(i + 1);
  }
  return b;
}

// g = log f
// g' = f' / f
// g = int (f' / f)
poly plog(poly a) {
  return pint(pdiff(a) * pinv(a));
}

// g = exp(f)
// log g - f = 0
// g <- g - g * (log g - f))
// g <- g * (1 - log g + f)

poly pexp(poly a) {
  const int n = a.size();
  poly x = {1};
  for (int i = 1; i < n; i *= 2) {
    const int m = min(n, i * 2);
    x.resize(m);
    x = x * (-plog(x) + cut(a, m) + 1);
  }
  return x;
}

int modsqrt(int a, int p) {
  auto modpow = [&](int a, int b, int m) {
    int ret = 1;
    while (b > 0) {
      if (b & 1) ret = 1LL * ret * a % m;
      a = 1LL * a * a % m;
      b /= 2;
    }
    return ret;
  };
  auto modinv = [&](int a, int m) {
    return modpow(a, m - 2, m);
  };
  auto issquare = [&](int a, int p) {
    return modpow(a, (p - 1) / 2, p) == 1;
  };
  if (a == 0) return 0;
  if (p == 2) return a;
  if (!issquare(a, p)) return -1;
  int b = 2;
  while (issquare((1LL * b * b - a + p) % p, p)) b++;
  int w = (1LL * b * b - a + p) % p;

  auto mul = [&](std::pair<int, int> u, std::pair<int, int> v) {
    int a = (1LL * u.first * v.first + 1LL * u.second * v.second % p * w) % p;
    int b = (1LL * u.first * v.second + 1LL * u.second * v.first) % p;
    return std::make_pair(a, b);
  };

  // (b + sqrt(b^2-a))^(p+1)/2
  int e = (p + 1) / 2;
  auto ret = std::make_pair(1, 0);
  auto v = std::make_pair(b, 1);
  while (e > 0) {
    if (e & 1) ret = mul(ret, v);
    v = mul(v, v);
    e /= 2;
  }
  return ret.first;
}

// g = sqrt(f(x))
// g^2 = f(x)
// g^2 - f(x) = 0
// g <- g - (g^2 - f(x)) / 2g
// g <- (g + f(x)/g) / 2
poly psqrt(poly a) {
  const int n = a.size();
  vector<mint> x(1);
  x[0] = modsqrt((int)a[0], MOD);
  mint i2 = modinv(2);
  for (int i = 1; i < n; i *= 2) {
    const int m = min(i * 2, n);
    x.resize(m);
    x = (x + cut(a, m) * pinv(x)) * i2;
  }
  return x;
}

vector<mint> F_{1, 1}, R_{1, 1}, I_{0, 1};

void check_fact(int n) {
  for (int i = I_.size(); i <= n; i++) {
    I_.push_back(I_[MOD % i] * (MOD - MOD / i));
    F_.push_back(F_[i - 1] * i);
    R_.push_back(R_[i - 1] * I_[i]);
  }
}

mint I(int n) { check_fact(abs(n)); return n >= 0 ? I_[n] : -I_[-n]; }
mint F(int n) { check_fact(n); return n < 0 ? 0 : F_[n]; }
mint R(int n) { check_fact(n); return n < 0 ? 0 : R_[n]; }
mint C(int n, int r) { return F(n) * R(n - r) * R(r); }
mint P(int n, int r) { return F(n) * R(n - r); }
mint H(int n, int r) { return n == 0 ? (r == 0) : C(n + r - 1, r); }

template<class T>
ostream &operator<<(ostream &o, vector<T> a) {
  for (int i = 0; i < a.size(); i++) {
    if (i > 0) o << ' ';
    o << a[i];
  }
  return o;
}

// ref:
//   Ce Jin, Hongxun Wu
//   A Simple Near-Linear Pseudopolynomial Time Randomized Algorithm for Subset Sum
//   arXiv https://arxiv.org/abs/1807.11597
// 
// g = exp(f)
// g' = f' exp(f)
// g' = f' * g
// [g1, 2*g2, 3*g3, 4*g4, ...] = [f1, 2*f2, 3*f3, 4*f4, ...] * [g0, g1, g2, g3, ...]
// based on divide and conquer
poly pexp_rec(poly a) {
  const int m = a.size();
  int n = 1;
  while (n < m) n *= 2;
  a.resize(n);
  a = pdiff(a);
  poly res(n);
  vector<vector<mint>> pre;
  for (int i = n; i >= 1; i >>= 1) {
    vector<mint> f(i);
    for (int j = 0; j < i; j++) {
      f[j] = a[j];
    }
    fft.ntt(f);
    pre.push_back(f);
  }
  auto dfs = [&](auto dfs, int l, int r, int h) -> void {
    if (r - l == 1) {
      if (l > 0) res[l] *= I(l);
      return;
    }
    int m = (l + r) / 2;
    dfs(dfs, l, m, h + 1);
    vector<mint> g(r - l);
    for (int i = 0; i < m - l; i++) {
      g[i] = res[l + i];
    }
    fft.ntt(g);
    for (int i = 0; i < r - l; i++) {
      g[i] *= pre[h][i];
    }
    fft.invntt(g);
    for (int i = 0; i < r - m; i++) {
      res[m + i] += g[m - l + i - 1];
    }
    dfs(dfs, m, r, h + 1);
  };
  res[0] = 1;
  dfs(dfs, 0, n, 0);
  res.resize(m);
  return res;
}

int main() {
  cin.tie(nullptr);
  ios::sync_with_stdio(false);
  cout << fixed << setprecision(15);
  int N; cin >> N;
  vector<mint> a(N);
  rep(i, N) cin >> a[i];
  cout << pexp_rec(a) << endl;
}